Can detailed oxidation kinetics studies indicate where reactivity occurs with ice?

Jon Abbatt, University of Toronto

- Part 1 Introduction
- Part 2 Bulk and Surface: Br-/O₃
- Part 3 Surface Only; SO₂/H₂O₂
- Part 4 Reactant separation: Organic diacids/OH

Thanks to: Sam Clegg, Shawna Gao, Nathan Oldridge

Can detailed oxidation kinetics studies indicate where reactivity occurs with ice?

Jon Abbatt, University of Toronto

Part 1 – Introduction

Part 2 – Bulk and Surface: Br-/O₃

Part 3 – Surface Only; SO₂/H₂O₂

Part 4 – Reactant separation: Organic diacids/OH

Answer: Yes, especially when given the contrast of analogous aqueous phase kinetics.

Thanks to: Sam Clegg, Shawna Gao, Nathan Oldridge

Langmuir—Hinshelwood Mechanism

See: e.g. Poschl et al., 2001

Formation of Br_2 from Exposure of Frozen and Liquid NaCl/NaBr Solutions to O_3

Ice Substrate: Frozen NaCl/NaBr, 253K

Main Points:

- Proceeds via both bulk and surface phase chemistry
- Kinetics provide a quantitative separation of the two
- Chemistry occurs in the brine

Reference: Oldridge and Abbatt, JPC-A, 2011.

Bromine Activation by O₃

• Potential dark initiator of the bromine explosion

• Indications of surface phase chemistry in the aqueous and ice systems: Anastasio and Mozurkewich, 2002; Hunt et al., 2004; Thomas et al., 2006; Clifford and Donaldson, 2007; Wren et al., 2010.

• Br₂ is formed from frozen seawater (Oum et al., 1998)

Issues:

Do the surface- or bulk-phase kinetics dominate on ice substrates?

Is the reaction with brine or with ice?

Experimental: Coated-wall Flow Tube and CIMS

Kinetics on frozen solutions show a strong temperature dependence, probably related to the presence of brine

NaCl 0.5 M, NaBr 8 mM, pH 5.6, $[O_3] = 2 \times 10^{14} / \text{cm}^3$

Results on frozen solutions indicate <u>both</u> bulk- and surface-phase kinetics

Results on <u>liquid</u> solutions have the same dependence on ozone, with the liquid kinetics slightly faster (about 3X)

Excellent agreement between the measured bulk uptake coefficient and that calculated using:

$$\gamma_{\text{bulk}} = \frac{4RTH\sqrt{Dk^{\text{I}}}}{\omega}$$

and assuming: $O_3 + Br^- \rightarrow BrO^- + O_2$ (Rate Limiting Step) $BrO^- + H^+ \rightarrow HOBr$ $HOBr + Br^- + H^+ \rightarrow Br_2 + H_2O$

> $\gamma_{\text{Measurement}} = 8 \times 10^{-8}$ $\gamma_{\text{Calculation}} = 1.1 \times 10^{-7}$

The same mechanism apparently proceeds on both liquid and frozen solutions.

 \Rightarrow On the frozen solutions, the reaction probably proceeds via the brine.

Surface- and bulk-phase kinetics proceed **simultaneously**.

Conclusions from the Ozone/Bromide Reaction

- The surface phase reaction is dominant for atmospheric ozone levels
- Bromine activation via this reaction will be positively correlated with temperature
- Efficient activation:

For $\gamma = 10^{-8}$, 30 ppb of ozone could process a monolayer of Br⁻ in 1 month, corresponding to about 2 pptv/day into a 500 m high boundary layer

Reactive uptake of SO₂ to ice surfaces containing adsorbed H₂O₂: SO_{2(g)} + H₂O_{2(g)} \rightarrow H₂SO_{4(ads)}

Ice Substrate: Ice, 228 K

Main Points:

• Reaction is relevant to SO_2 dry deposition and SO_2 loss in ice clouds

Reaction occurs strictly on the surface

Reference: Clegg and Abbatt, ACP, 2001.

Observations: Enhanced, irreversible SO_2 uptake when H_2O_2 is present

Mechanism: $SO_2 + H_2O_2 \rightarrow H_2SO_4$ $H_2O_2(g) \leftrightarrow H_2O_2(ads)$ $SO_2(g) \leftrightarrow SO_2(ads)$ $SO_2(ads) + H_2O \leftrightarrow H^+(ads) + HSO_3^-(ads)$ $HSO_3^-(ads) + H_2O_2(ads) \rightarrow HOOSO_2^-(ads) + H_2O$ $HOOSO_2^-(ads) + H^+(ads) \rightarrow 2H^+(ads) + SO_4^{2-}(ads)$

10-1 10-1 Ŧ 10-2 Slope = -0.7 10-2 $\gamma(SO_2)$ $\gamma(SO_2)$ 10-3 10-3 10-4 Slope = 1.110-5 10-4 10-3 10-4 10-2 10-1 10-4 10-3 10-2 10-5 $P(H_2O_2)$ (Pa) P(SO₂) (Pa)

Oxidation of Small Dicarboxylic Acids by Photolytically Generated OH

Ice Substrate: Frozen H₂O/H₂O₂ solutions, 253 K

Main Points:

• Common polar ice components are subject to oxidation to smaller di-acids and CO₂

- Chemistry similar to that in the liquid phase (Yang et al., 2008)
- Reactant solubility/segregation affects the kinetics in ice, and may lead to slow oxidation kinetics in ice

Reference: Gao and Abbatt, JPC-A, submitted.

Organic Diacids/OH: Experimental

Organic Diacids/OH: Results and Interpretation

k' (10⁻⁵ s⁻¹)

	[diacid] (mM)	[H ₂ O ₂] (mM)	RT	0°C	- 20°C
succinic acid	2.5	30	13±1	11±2	0.8±0.2
malonic acid	2.5	30	3.4±0.6	2.2±0.3	1.0±0.1

 Does the OH production rate change between liquid and frozen solutions?
NO: Measurements of the OH production rate using a radical trap show that it is the same in the ice substrates as in liquid solutions.

• Solubility of malonic acid is 20X that of succinic acid

We hypothesize that the succinic acid and the H_2O_2 phase separate or spatially segregate upon freezing, leading to lower oxidation rates. Is this behavior general?

Conclusions

• Detailed, targeted kinetics studies can provide significant information about the nature of the reaction, much more information than the overall rate

• The results are understandable, driven by how the substrates is prepared:

The surface reaction appears to dominate for $O_3 + Br^2$ \Rightarrow Quantitative separation of bulk versus surface chemistry

Aqueous phase processes in "ice" dominate for O_3/Br^- , OH/diacids \Rightarrow Identification of aqueous phase/brine chemistry

 $H_2O_{2(g)} + SO_{2(g)}$ proceeds in the surface-layer on a pure ice surface \Rightarrow Identification of surface phase chemistry

Reactant segregation can lead to slow kinetics with OH/diacids \Rightarrow Indication of (in)efficient reactant mixing

 Attention should be given to the <u>details of the kinetics</u>, to <u>repeated studies of</u> the same reactions above and below freezing, and to work with <u>real snow/ice</u> <u>samples</u>

Acidity dependence is quite weak in the 'brine' regime (i.e. 253 K), from pH 2 to 7

NaCI 0.5 M, NaBr 8 mM, [O₃] = 2×10¹⁴ /cm³ , 253 K

Organic Diacids/OH: Kinetics Results

