

POLAR SCIENCE FOR PLANET EARTH

Atmospheric nitrogen oxides (NO and NO₂) at Dome C: first observations & implications for reactive nitrogen cycling above the East Antarctic Ice Sheet

Markus M. Frey^{1,2}

¹British Antarctic Survey, Cambridge, UK ²School of Engineering, University of California, Merced, CA, USA

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL 3rd Workshop on Air-Ice Chemical Interactions (AICI) -Jun 6-8 2011, Columbia University, New York BAS Contribution to NITEDC 2009/10 "NItrate Evolution in Surface Snow at Dome C" (LGGE, France) see poster for overview by Savarino et al.

Thanks to ...

A.E. Jones, BAS N. Brough, BAS P. Anderson, BAS E.W. Wolff, BAS

J.L. France, RHUL M.D. King, RHUL J. Savarino, LGGE

VSTITUT

a. Net O₃ production

b. HO_x partitioning towards OH

 $NO + HO_2 \rightarrow NO_2 + OH$

Reactive nitrogen cycling Impact on oxidation capacity

c. Control of H₂O₂/ROOH formation

 $HO_2 + HO_2 \rightarrow H_2O_2$

 $NO + HO_2 \rightarrow NO_2 + OH$

Frey et al., ACP, 2009

NO₃⁻ concentration & isotopic composition in surface snow

Reactive nitrogen cycling 2. Impact on firn & ice core record

e.g. Dome C (East Antarctica)

Frey et al., ACP, 2009

Roethlisberger et al., 2000

M.M. Frey, BAS

30000

600

ANTCI 2005 Airborne Campaign

Slusher et al., 2010

High NO_x and OH and South Pole. Typical for the East Antarctic Ice Sheet?

High NO at South Pole in summer because

- 24hr sunlight
- shallow atmospheric boundary layer
- located at base of large airshed
- low T leading to low primary production of HO_x

South Pole is a singular case: no diurnal forcing

• Magnitude and variability of NO_x concentrations & flux on diurnal to seasonal time scales elsewhere on EAIS?

• What are the drivers of variability & snow emissions?

• What else needed to parameterize NO_x emissions on the ice sheet scale?

The Summer 2009/10 campaign at Dome C

10 week Field Season 19-Nov '09 until 3-Feb '10

French-Italian Concordia Station (IPEV/PNRA)

EPICA ice core site

- 1100 km from the coast
- 24 hr sunlight
- 75° S (as Halley)
- -22 to -50 °C

The Summer 2009/10 campaign at Dome C

Firn Air Sampling

Experiments

- 1) Concentration gradients: 0.01, 1.0 & 4.0m
- 2) Firn air concentration

3) UV filter

- NO & NO₂ : 2-channel chemiluminescence analyzer
- UV-A broadband radiometer
- T_{air} (1.0m) and T_{snow} (skin-T, profiles)
- snow NO_3^- profiles

Use of UV-transparent plexi-glass as "flow inhibitor"

Dome C 10-Dec-2009 - 28-Jan 2010

95±77 pptv (72 pptv)

90±73 pptv (68 pptv)

67±37 pptv (61 pptv)

166±124 pptv (124 pptv)

153±115 pptv (115 pptv)

110±69 pptv (93 pptv)

3rd AICI Workshop - Jun 6-8 2011, Columbia University, New York

Plateau vs. Coast Comparison at 75° S

Ambient vs. Firn air levels

Ambient vs. Firn air levels

3rd AICI Workshop - Jun 6-8 2011, Columbia University, New York

Diurnal Variability at Dome C:

Ambient NO_x at 3 levels

- \rightarrow Build up of NO emissions above a strongly cooling snow surface
- \rightarrow Concentration gradients follow temperature gradients

3rd AICI Workshop - Jun 6-8 2011, Columbia University, New York

Ambient & Firn NO_x

Diurnal Variability of Boundary Layer Depth at Dome C

- daily build-up of a convective BL (~350m)
- decay of CBL between
 17-18 LT
- shallow nocturnal layer (<50m), likely stable stratification

Figure 4a. Sodar record for Dome C, 28 January 1999. Time axis is local time.

King & Argentini (JGR, 2006)

M.M. Frey, BAS

Diagnostic analysis of atmospheric turbulence -Bulk Richardson Number

$$R_{ib} = \frac{g[\theta_v(z_r) - \theta_v(z_0)](z_r - z_0)}{\theta_v(z_0)[u(z_r)^2 + v(z_r)^2](z_r - z_0)}$$

buoyancy (free convection)

R_{ib} =

wind shear (forced convection)

Diagnostic analysis of atmospheric turbulence -Bulk Richardson Number

Frey et al., in preparation

Diagnostic analysis of atmospheric turbulence -Bulk Richardson Number

NO NO₂ Median Diurnal Cycle at DC 2009/10 Median Diurnal Cycle at DC 2009/10 0.05 160 0.05 400 Ri >> 0 Ri >> 0 140 0.04 350 0.04 120 0.03 300 0.03 bulk Richardson Number NO₂ bulk Richardson Numbei Ri < 0 Ri < 0 NO, pptv NO $\mathrm{NO}_{\mathrm{X}^{\prime}}$ pptv 0.02 250 0.02 NO 80 0.01 200 0.01 60 0 150 -0 $NO + O_3 ---> NO_2 + O_2$ $NO + O_3 ---- > NO_2 + O_2$ 40 ⊾ 0 5 10 15 20 100 solar time 5 0 10 15 20 solar time

Comparison to Summit, Greenland

UV Filter Experiments

UV Filter Experiments

NOx reservoir?

 $NO_2 + hv \rightarrow NO + O(^{3}P)$

 $NO+O_3 \rightarrow NO_2+O_2$

 $NO_2 + hv \rightarrow NO + O(^{3}P)$

 $NO{+}O_3 \rightarrow NO_2{+}O_2$

Comparison of observed NO_x flux with model estimates

A. Estimate NO_x flux from concentration gradient observations; assume neutral BL

$$F = -K \frac{\partial c}{\partial z}$$
(1)

$$K(z) = \kappa z u^{*}$$
(2)

$$\frac{\kappa u(z)}{u^{*}} = \ln\left(\frac{z}{z_{0}}\right)$$
(3)

Flux **F** between 0.01 & 1.00 m

Eddy diffusivity **K**

Friction velocity **u***

B. Model NO₂ flux (France et al., ACPD, 2011)

• e-fold depth 10-20 cm!!

no cage effectimmediate venting to surface

Comparison of observed NO_x flux with model estimates

1) Observed F-NO₂ > Model

contribution from surface adsorbed HNO₃ photolysis at cold temperatures

no cage effectquantum yield 0.6 (Zhu, 2010)

- supported by isotopic evidence

2) Different variability

10-20% uncertainty in observed F-NO₂ in stable BL

venting of the NO_x firn air reservoir in the evening?

M.M. Frey, BAS

Devation from PSS

Devation from PSS

Dome C high HO₂ (2.8x10⁹ molec. cm⁻³) Spole 2.3x10⁷ molec. cm⁻³ Summit 2.8x10⁸ molec. cm⁻³ snow NO₂ emission

• IO + BrO ??

CONCLUSIONS & PERSPECTIVES

- Confirmation of 'anomalously' high NO & NO₂ above EAIS
- NO_x diurnal variability controlled by BL physics (convection & wind shear) applicable to other trace chemical species; more collaboration between atmospheric chemists & BL physicists
- Firn air obs suggest existence of a NO_x reservoir vertical extent? more firn air measurements, comparison to 1-D snow-atmo models, ice core interpretation
- PSS analysis indicates high oxidant levels & importance of flux for NO₂ : NO
- Observed F-NO₂ > model:

 a) photolysis might still explain >90% NO_{3⁻} loss from snow at DC
 b) insufficient understanding of processes, i.e. total photolysis rate lab studies, use of stable isotopes to identify process

Photolytic conversion of NO₂: interference by HONO

Photolytic conversion of NO₂: interference by HONO

j-HONO / j-NO₂ = 0.22

Ambient & Firn NO_x

