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NSF’s Arctic System Science Program:

Collaborative research: A synthesis of existing

and new observations of air-snowpack exchanges ™ =

to assess the Arctic tropospheric ozone budget @'

; (m'IIIITIIIII

develop, implement, and evaluate a
representation of the key processes governing
impacts of surface exchange over snow on
tropospheric ozone simulated by chemistry-
climate models.

Review and synthesis results from prior field studies relevant to O; and NO, exchange fluxes
New field studies to fill key knowledge gaps, especially those related to the dependence of vertical

O, fluxes on height above snow and sub-snow surface type
Incorporate parameterizations of snowpack and sub-snow processes into a single column model

(SCM) version of a chemistry-climate

Evaluation of model
Provide a first estimate of the total impact of current snow- and ice-cover upon tropospheric O in

subarctic and arctic and subarctic regions.




Modeling objectives

To develop & evaluate a process-based representation of snowpack
O; and NO, exchange for implementation in global chemistry-
climate models

To determine key O; and NO, chemical reactions in the snowpack

To better describe the connections between air-snow O5; and NO,
exchange on tropospheric O, budget

To assess the potential future conseqguences of climate change on
cryosphere-atmosphere exchange of NO, and O5 and high-latitude
photochemistry

Feedbacks?
Coupling the representation of cryosphere-atmosphere exchange to
climate model simulations of cryosphere physical properties




Motivation

Observed V o3 (F/C) over Snow

Emission Flux Deposition

Barrow (January 2000)
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Flg. 7. Comparison of hourly ozone data (in ppbv) at Barrow for January 2000 in comparison
with MATCH simulations at three different ozone-to-snow uptake resistances (Rs=10 000 [blue],
2000 [red] and 1000m s~ ' [green]).

Helmig, D., L. Ganzeveld, T. Butler, and S. Oltmans, The role of ozone atmosphere-snow gas exchange on polar, boundary-
layer tropospheric ozone — a review and sensitivity analysis, Atmospheric Chemistry and Physics, 7, 15-30, 2007.




Model description

Single-Column Model (SCM)

— 1D model + time dimension

— Based on
ECHAM4 (General Circulation Model) & RACMO (Regional
Atmospheric Climate Model) physics
ECHAMA4 atmospheric chemistry scheme considering natural and
anthropogenic emissions, gas-phase and cloud water chemistry,
turbulent & convective tracer transport, wet & dry deposition
— Uses
ECMWEF (European Center for Medium-Range Weather Forecast)
Re-analysis Data
For considering role of advection of u, v, T, g and LWC
Free troposphere initial concentrations/observed concentrations
For considering role of advection of long-lived tracers




Model schema

Canopy layout well tested... Should work as well for snowpack

Tropical rainforest, canopy-top NO, flux
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Model schema:
Advantages / Disadvantages

Advantages of 2-layer representation
Transport between each layer can be solved
analytically

ATM. LAYER Slightly easier to debug, less code

(60 levels) SPEED, much fa}ster -
Huge benefit when module is integrated
into a 3D model

Disadvantages
Too simple?
Lacks resolution
May miss out capturing some processes
that can only be observed at higher
resolution
Is it necessary?




Model schema

Snow cover under the canopy

ATM. LAYER
(60 levels, ~ 10m-km’s)

An automated system for continuous measurements of trace gas fluxes through
snow: an evaluation of the gas diffusion method at a subalpine forest site, Niwot SO' L LAYER
Ridge, Colorado, Brian Seok, et al., Biogeochemistry, 2009




Model: snow under the canopy

Fluxes and chemistry of nitrogen oxides in the Niwot Ridge,
Colorado, snowpack, Detlev Helmig, Brian Seok, Mark W
Williams, Jacques Hueber, Robert Sanford, Biogeochemistry
(2009)

Snow height [cm]

50
Day Of Year 2007

Sniow Height from the Ground (em)

How much of the soil NO, and CO, is effectively
emitted into the canopy trunkspace/atmosphere?
How does the below canopy snow-cover affect (O,)
dry deposition?




Model: snow under the canopy

Fluxes are generally > 0: upward fluxes
different from O reflect a flux divergence;
relevance of in-snowpack sources/sinks of NO + 30-10
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An automated system for continuous measurements of trace gas fluxes through snow: an evaluation of the gas diffusion
method at a subalpine forest site, Niwot Ridge, Colorado, Brian Seok, et al., Biogeochemistry, 2009




2-years of NO, and O, concentration and
flux measurements at Summit




Micro/BL meteorology validation

To properly simulate concentrations and fluxes, the
micrometeorology needs to be correct

Correlation between Modeled and Observed July-August 2008 u” comparison (model vs gradient ws)

Incoming Solar Radiation
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Micro/BL meteorology validation

Simulated PBL depth, Summit, March-June 2004

— PBL height without subs.
— PBL height incl. subsidence
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* To be evaluated by comparison with SODAR
observations at Summit




Chemistry:
Model initialization

Initial [NO;] and Jyos nox taken from Honrath et al
2002 -
Next slide
Snow surface microtopography (for windpumping)
Relief height, length, width (“guessed”):

0.23, 2.2, 1.3 m (Liao/Tan 2008, Antarctica)
Jennie’s Thomas estimates: 0.015, 0.03, 0.03 m

Ice pack temperature, 263 K (from meas.)

Snow density (bulk), 0.3 g/cm3 (from meas.)

Grain diameter, permeabillity, etc. calculated based on
relationship with density (Domine et al 2008)

Albedo, 0.89 (from meas.)
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Chemistry:
Experiments

1. Testif [NOg] and Jyosz nox F€SUIt In proper
order of magnitude [NO], [NO,] in show
— Compare simulated results against
measured in 14-20 April 2009

2. TestIf NO, chemistry (gas-phase only) is
sufficient enough to explain most of the
O, removal in snow

— “Trial & error”, found V455 = ~5€# cm/s for
proper O, gradient b/w surface and in-snow




Chemistry:
Experiment 1

 Testif [NOg]and Jyosz nox FESUIt In proper
order of magnitude [NO], [NO,] in show

— Compare simulated results against measured
iIn 14-20 April 2009




Chemistry:
Exp 1 results (NO)

altitude [m]

| s Simulated NO
| [ppt]
| 14-20 April 2009
) l ' ‘ NOTE: discrepancy between time axis
‘ I model vs observations; leap year...
) 9: 2
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Snow Tower NO: Apni 14-20, 2009
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Is observed NO above the snow
indeed <<50 ppt or is this a
plotting interpolation issue?




Chemistry:
Exp 1 results (Ozone)

Simulated O,
[Ppb]

14-20 April 2009
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Chemistry:
Exp 1 results (NO,)

Simulated NO,,
[PPb]

14-20 April 2009
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Chemistry:
Exp 1 results (NO)
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Chemistry:
Exp 1 results (NO,)

altitude [m]:
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Chemistry:
Exp 1 discussion

Using Honrath et al 2002 average [NO;]
and Jyoz nox Values seem to be OK

'NOJ] Is slightly overestimated
O,] Is slightly underestimated

Diurnal signals captured overall pretty
good

NOTE: This run included NO, chemistry and
imposed V5, = 5e* cm/s
Explained in experiment 2




Chemistry:
Experiment 2

Test If NO, chemistry (gas-phase only) is
sufficient enough to explain most of the O,
removal in snow (hypothesis; NO-O,
titrat.)

— “Trial & error”, found V455 = ~5e# cm/s for
proper O, gradient b/w surface and in-snow




Chemistry:
Exp 2 results (Ozone gradients)

Average (DO3) w/ stdev
DO3 = 03 surf- 03 snow

They are different
p <0.05

Statistically
NOT
different
p>0.05

No imposed
Vd03

L .
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Set Vo3 0.0 cm/s 5e4 cm/s
ResultV,o; 1.1le3cm/s >3.6e4 cm/s




Chemistry:
Exp 2 discussion

NO, chemistry (gas-phase only) alone
does NOT explain most of the O; removal
IN Snow

We will have to look into heterogeneous
(QLL) chemistry.

Looking at tendencies

What rxns destroy/produce O, in the snow?
How much is it chemical vs physical?




Chemistry:
Exp 2 tendencies (O,)
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Chemistry:
Exp 2 tendencies (Rxns =2 O,)

03 photodiss./chem., height : 9.0 m 03 photodiss./chem., height : 05m
react./photo.

Above SnOW — chem. tend.

— HO2+NO
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~ 40 pptv/hr Chemical destruction Upward flux due to chemistry

- Also need to check 2" snowpack layer to assess if
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- Missing reactions? NOx-O3
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Conclusions and outlook

NO, gas-phase chemistry alone does NOT explain O,
removal In snow

We will have to look into heterogeneous (QLL) chemistry
Based on the aqueous-phase chemistry scheme of
1D model or....

Jenny Thomas’s model to assess role of BrO in
snowpack O, destruction?
Physical sorption process?

Further validation
micromet. and BL structure

photolysis rates (data?)
Mid-latitude snowpack simulations, Michigan forest, Niwot Ridge




