

The Applicability of Artificial Snow for Environmental Studies

Petr Klán

Department of Chemistry and Recetox Faculty of Science, Masaryk University Kamenice 5/A8, 625 00 Brno, Czech Republic www.sci.muni.cz/photochemistry

AICI workshop at Columbia University, 2011

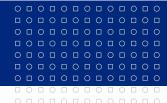
www.muni.cz

 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0

Photochemistry of semi/nonvolatile organic compounds in/on snow and ice

MASARYK UNIVERSITY

Motivation


... **anthropogenic organic compounds** are present in high latitude and related ice and snow environments at noticeable concentrations

... some organic compounds can undergo primary **photochemical** or secondary (either dark or photochemically initiated) chemical processes on/in ice and snow

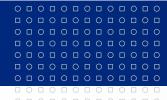
... to improve the current knowledge about the accumulation and photochemical transformations of organic compounds, such as POPs, in polar regions and atmospheric cloud particles

Information is needed

- ... physical interactions
- ... mechanisms of the phototransformations
- ... the pollutants' lifetimes in the polar areas
- ... environmental risk

Laboratory experiments

Field measurements: hardly reproducible (different loads of contaminants in every sample), photochemical reactions: none of the factors is constant enough...


Frozen ice samples: simulation of contaminant aggregation processes and the reactions within the frame of the clusters (bimolecular reactions)

Ice surface: difficult arrangement of matrix isolation-type experiments; may not be relevant to natural conditions

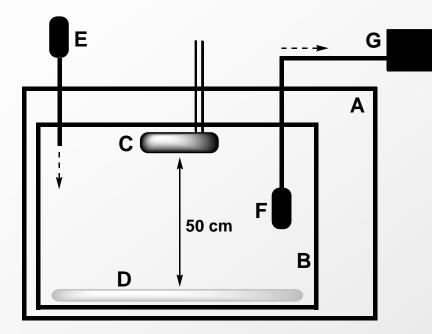
Can we make relevant snow (ice) samples? Can we simulate natural "polar" photoprocesses in the lab? Can we predict the scope of photoprocesses?

\rightarrow contaminated natural snow samples

- \rightarrow artificial snow samples
 - ... very low contaminant concentrations, no organic co-solvents, homogeneity

www.muni.cz

How to make artificial (contaminated) snow


- ... Fast/slow **freezing of a solution** being sprayed ... to liquid nitrogen or in a cold room.
- ... Adsorption of gaseous compounds on pure artificial (or even natural) snow (experimentally challenging)

(a known method: HW Jacobi (photochemistry), JPD Abbat (SSA), T Okada (ice chromarography), freeze-drying technology (biochemistry)...)

www.muni.cz

Artificial snow and cold chamber (reactor)

A photochemical cold chamber: A, freezer; B, steel box; C, UV lamp in a Pyrex/quartz-jacketed housing; D, snow sample; E, polyurethane foam filter (inlet); F, polyurethane foam filter; G, pump (outlet).

Artificial snow

- ... fast vs. slower freezing of a solution
 - ... original question: is most of the hydrophobic material expelled on ice surface?
- ... from (g): contaminats: adsorption/desorption, saturation, site availability; aging
- ... photochemistry, surface chemistry ... with gases

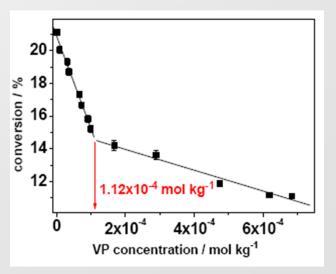
snow gun: liquid N₂

snow gun: cold room

nebulizer: liquid N₂

... grain size; specific surface area; surface coverage, contaminant associations

Specific surface area of artificial snow

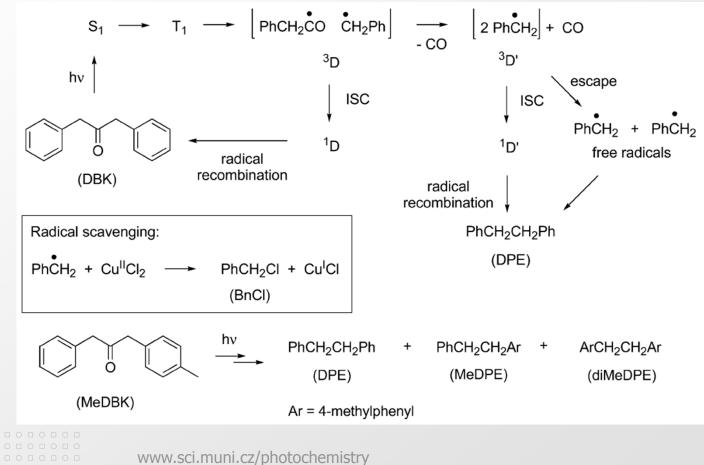

Surface coverage ... the fraction of the adsorption sites occupied by molecules

- ... Langmuir adsorption isotherm; or calculated from the known solid surface area and the area occupied by a single molecule
- ... different techniques (e.g., adsorption of Kr, CH₄)
- ... natural snow (10-10³ cm² g⁻¹, F. Domine)

Valerophenone photochemistry

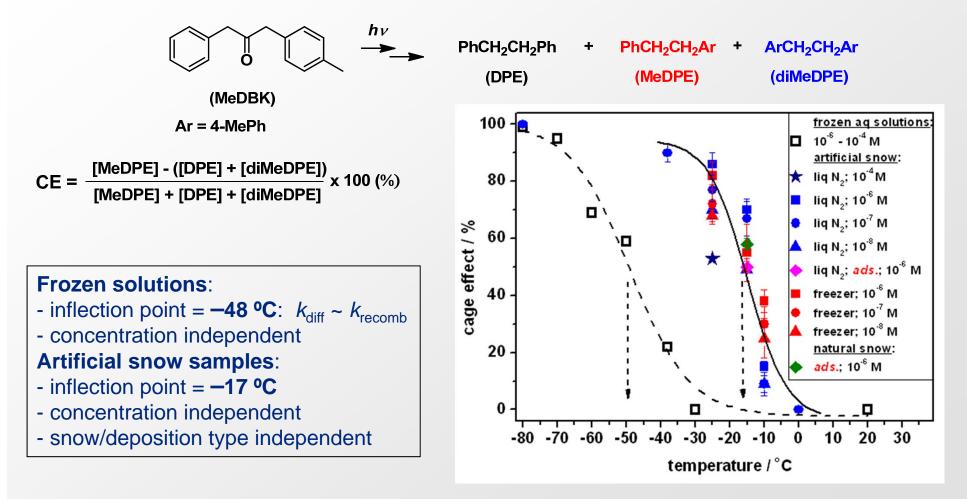
- ... different surface loads
 - under the same irradiation conditions
- ... act as an internal optical filter
- ... a decrease in the reaction efficiency

Similar (ca. **400 cm² g⁻¹**) for all types of snow, incl. snow contaminated from vapors



R. Kurková, D. Ray, D. Nachtigallova, P. Klan Environ. Sci. Technol. 2011, 45, 3430-3436

Cage effect

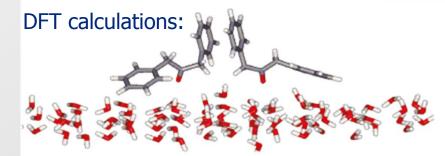

0 🗆 0 🗆 0 🗆 0 🗆 0 🗆 0 🗆 0

... the fraction of radical pairs that undergo reactions within a primary **reaction cage** ... diffusion, restrictions of the microenvironment, associations

0 🗆 0 🗆 0 🗖 0 🗖 0 🗖 0 🗖 0

Diffusion on the surface of snow grains/in frozen solutions

R. Kurková, D. Ray, D. Nachtigallova, P. Klan Environ. Sci. Technol. 2011, 45, 3430-3436

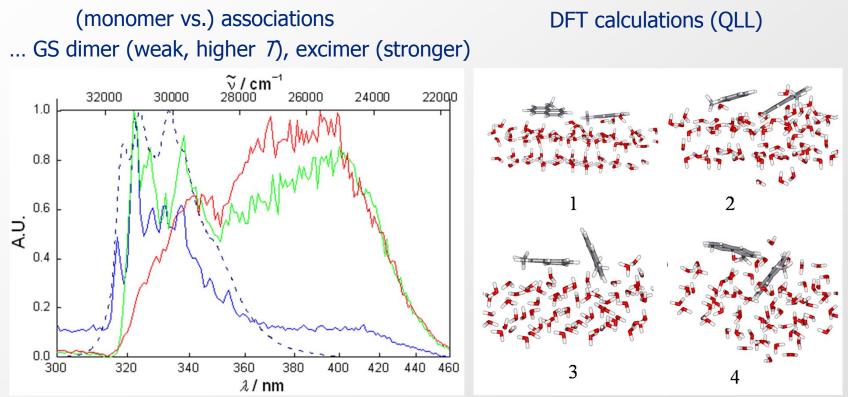

Diffusion on the surface of snow grains

- **CE magnitude:** ... the **mobility** (diffusion) **of radicals** in a constraining environment (as a temperature-dependent variable)
 - ... a local concentration of MeDBK ... freezing point depression

Frozen solutions: ... aggregates in vains, micropockets

... frozen matrix ... **3D cage**

- **Snow grains**:
- ... same CE for samples of different deposition (VP: monolayer below $c = 10^{-5}$ mol L⁻¹)
- ... surface ... 2D cage
- ... independent on *c*
 - ... associations
 - (equilibrated)



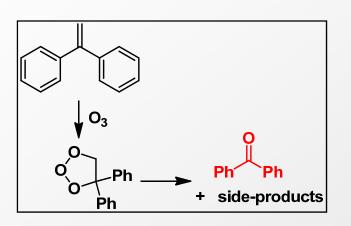
R. Kurková, D. Ray, D. Nachtigallova, P. Klan Environ. Sci. Technol. 2011, 45, 3430–3436

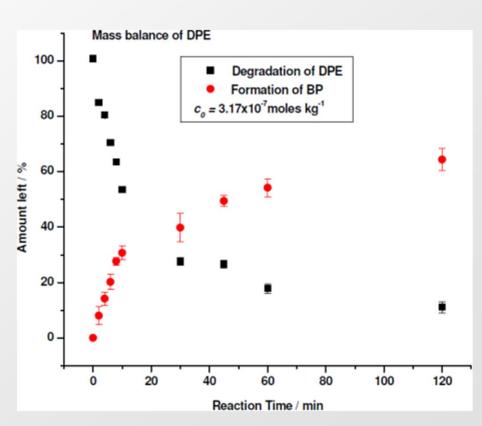
www.muni.cz

Snow grains ... 1-methylnaphthalene spectroscopy

deposition from vapors

The emission spectra of **1MN** deposited on artificial snow grains (the surface loads: $c = 5.6 \times 10^{-6}$, blue line; $c = 7.0 \times 10^{-5}$, green line; and $c = 9.0 \times 10^{-5}$ mol kg⁻¹, red line). The samples were excited at $l_{exc} = 282$ nm. The black line represents the emission spectrum of **1MN** of an aqueous solution ($c = 7.7 \times 10^{-5}$ M) for comparison.


D. Heger, F. Surman, D. Nachtigallova, P. Klan


 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0

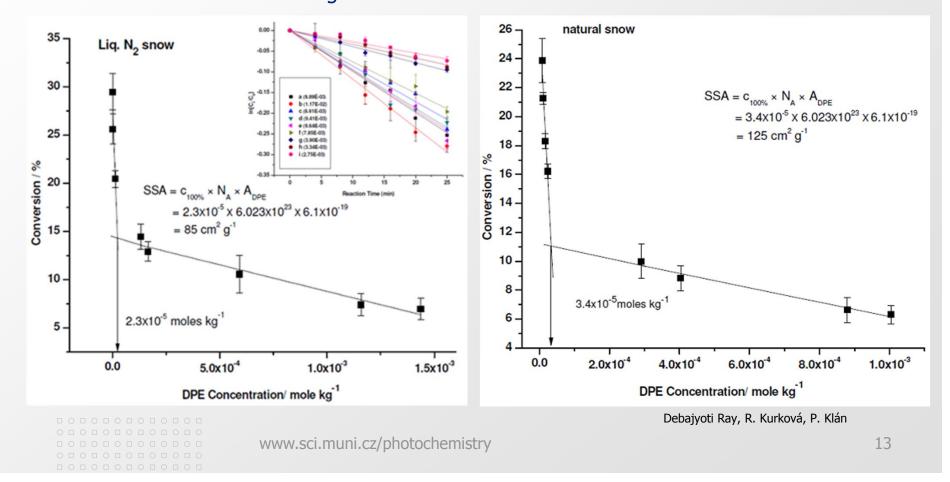
MASARYK UNIVERSITY

$\textbf{Gas} \rightarrow \textbf{snow surface reaction}$

- ... adsorption of DPE from (g); different c
- ... ozonolysis at T = -15 °C
- ... benzophenone production
- ... negligible volatilization

 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I
 O
 I

www.sci.muni.cz/photochemistry


Debajyoti Ray, R. Kurková, P. Klán

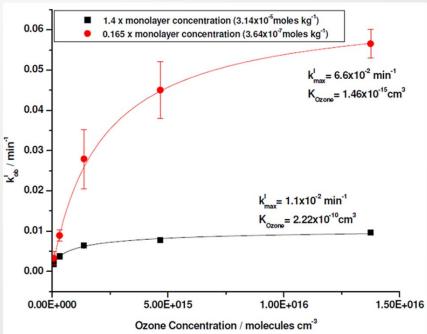
www.muni.cz

MASARYK UNIVERSITY

$\textbf{Gas} \rightarrow \textbf{snow surface reaction}$

... **specific surface area** determination SSA /cm² g⁻¹ = $c_{cont} \times N_A \times A_{DPE}$... sites available for surface-gas reaction

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0


MASARYK UNIVERSITY

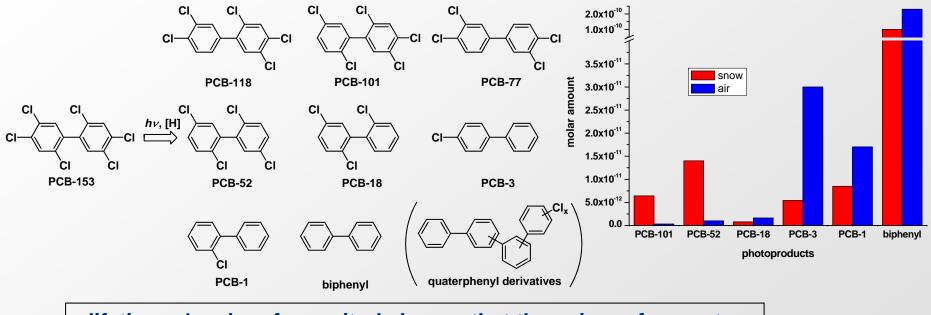
$\textbf{Gas} \rightarrow \textbf{snow surface reaction}$

the Langmuir-Hinshelwood ozonization mechanism

... a bimolecular surface reaction between two molecules which are adsorbed on adjacent sites

... fit of the experimental data

(k_{max} is the maximum first order rate coefficient at saturated surface concentration of ozone, K_{O3} is the adsorption equilibrium constant of ozone and $[O_3]$ is the gas phase ozone concentration)


Debajyoti Ray, R. Kurková, P. Klán

WW						

0 🗆 0 🗆 0 🗖 0 🗖 0 🗖 0 🗖 0

Photodegradation of pollutants - PCBs

... environmentally relevant concentrations (100 ng kg⁻¹)

- lifetimes 1 order of magnitude longer that those in surface waters
- coupling reactions suppressed (as in water)
- minor oxidation by O_2
- volatile compounds' desorption

Matykiewiczova, N., Klanova J., Klan P., Environ. Sci. Technol. 2007, 41, 8308-8314.

Photochemistry of organic compounds in polar areas?

We can measure absorption properties of organic impurities, excited state and short-lived species lifetimes (LFP), and the reaction quantum yields.

We could predict the pollutants' lifetimes

- ... for bimolecular processes: if we evaluate
 - a) local concentration (uptake; aggregation, surface coverage, desorption)
 - b) mobility (diffusion) within the lifetime of a reactive species
 - c) aggregation due to hydrophobic and other non-covalent interactions
 - d) bimolecular quenching, filter effect
 - e) primary reactions and secondary dark reactions with (g); side reactions (O₂ vs. H-donors; OH; acids... but *c* is uknown)

... for purely unimolecular processes

- similar points; but we do not need to consider external reactants
- ... let's be aware of side-bimolecular processes!

... artificial snow as a laboratory study matrix

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

MASARYK UNIVERSITY

www.muni.cz

Acknowledgments

Pavel Dvořák **Dominik Heger** Jana Klánová Ján Krausko Romana Kurková Beáta Magyarová Nina Matykiewiczová **Dana Nachtigallová** Vilém Neděla **Debajyoti Ray** Radovan Růžička František Surman

Czech Science Foundation Czech Ministry of Education, Youth and Sport European Union