Molecular Dynamics Study of Basal, Prismatic, and Pyramidal Surfaces of Ice

Martina Roeselova

Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague

QLL (surface premelting of pure ice)

- Surface premelting predicted by all water models in computer simulations (liquid-like layer develops spontaneously at the free surface of ice well below the melting point)
- QLL thickness <u>independent of water model</u> when compared at the same undercooling relative to the melting point of the model

THE JOURNAL OF CHEMICAL PHYSICS 129, 014702 (2008)

The thickness of a liquid layer on the free surface of ice as obtained from computer simulation

M. M. Conde,¹ C. Vega,^{1,a)} and A. Patrykiejew² ¹Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense, 28040 Madrid, Spain ²Faculty of Chemistry, MCS University, 20031 Lublin, Poland

What ice can teach us about water interactions: a critical comparison of the performance of different water models

C. Vega,* J. L. F. Abascal, M. M. Conde and J. L. Aragones

Faraday Discuss., 2008, **141**, 1–26

Thickness of QLL as a function of T

Conde, Vega, Patrykiejew (J. Chem. Phys. 2008) * Experimental values by Bluhm et al. (J. Phys.: Condens. Matter 14, L227, 2002)

"liquid-like = molecules feel the underlying solid"

- QLL appearance starts at different temperatures depending on the ice facet exposed to vapor phase.
- At given T, the thickness of QLL differs for different ice facets.

Cirrus ice crystals

(Walden et al. 2003)

Ice crystals grown by vapor deposition

- basal (0001)
- prismatic (10<u>1</u>0)
- 28° pyramidal (10<u>1</u>1)
- 14° pyramidal (20<u>2</u>1)

VP-SEM image

Pfalzgraff, Hulscher, & Neshyba, Atmospheric Chemistry and Physics, 2010, 10, 2927

MD simulations

- Ice I_h slab
- 2880/3456 H₂O molecules
- Ice block dimensions:
 x, y, z ~ 4 6 nm
- 6-site water model Nada, van der Eerden, J. Chem. Phys. 2003, 118, 7410
- T_m = 289 K Abascal et al., J. Chem. Phys. 2006, 125, 166101
 T = 250 K (~ -40 K)

Top view

3

(c) 28° pyramidal

(b) prismatic

(d) 14° pyramidal

Inter-layer transitions

- $\epsilon_1 \leftrightarrow \epsilon_2$ mixing time (ϵ_2 "survival" time) ~ 10 ns
- Binary exchanges QLL $(\epsilon_1 + \epsilon_2) \leftrightarrow \mu_1 \dots$ char. time ~ 10² ns
- Important for surface diffusivity Bolton and Pettersson, J. Phys. Chem. B 2000, 104, 1590
- Time scales facet-specific

Prismatic surface after 100 ns, viewed along the secondary prismatic axis. Molecules crossing periodic boundaries are depicted in neighboring domains.

Mean squared displacement

1-D diffusivity on ice surfaces

Facet exposed	Direction of diffusion	Q	1-D diffusivity, D [*] (cm ² /s x 10 ⁻⁶)	Diffusion length, x _s (nm)
Basal	Х	1/5	1.67	14.3
	У	1/5	1.68	14.3
Prismatic	Х	1/6	0.70	9.9
	Z	1/6	0.58	9.0
28º Pyramidal	Х	1/6	1.34	15.1
	\mathbf{z}'	1/6	1.20	14.3
14º Pyramidal	Х	1/6	1.21	12.5
	$\mathbf{z}^{"}$	1/6	1.13	12.0

experiment - liquid water: $D = 1.6 \times 10^{-6} \text{ cm}^2/\text{s} (-35^{\circ}\text{C})$ $D = 12.0 \times 10^{-6} \text{ cm}^2/\text{s} (0^{\circ}\text{C})$ $D = 18.9 \times 10^{-6} \text{ cm}^2/\text{s} (20^{\circ}\text{C})$ *Price et al., J. Phys. Chem. A* **1999,** 103, 448-450

Work in progress: Temperature dependence of diffusivity

Arrhenius analysis to determine the activation energy

Acknowledgements

Steven Neshyba (U. Puget Sound, Tacoma) Will Pfalzgraff Ivan Gladich (IOCB Prague)

W. Pfalzgraff, S. Neshyba and MR, J. Phys. Chem. A Victoria Buch Memorial Special Issue (June 2011)

Grantová agentura České republiky Czech Science Foundation

Ministerstvo školství, mládeže a tělovýchovy ČR Czech Ministry of Education, Youth and Sports

Water model	Melting temperature (K)		
TIP3P	145		
SPC	190.5		
SPC/E	215		
TIP4P	230		
TIP4P/Ew	243		
TIP4P/Ice	271		
TIP5P	272		
NE6	275 (289)		
Expt.	273.15		

Vega et al., Mol. Phys. 2006, 104, 3583 García Fernández et al., J. Chem. Phys. 2006, 124, 144506