


What things do we know?
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We know chlorine atom chemistry is occurring and it is important!

(Jobson et al., JGR, 1994)



OASIS09 —
Measurements of “everything that matters”

[Cl]., = (2J[Cl,] + J[BrCI] + J[CIO] + K[Cl,][OH] +4[CIO][OH] +
KCIO][NO] + A{CIO][CIO])

(K[HO,] + k[O3] + k[MEK] + k[CH,] + k[C,H,] + k[C,H.]
+ K[C,Hg] + K{C3He]+ A[C5Hg] + A[iC4H;0] + A[nC4H 0] +
K{HCHO] + k{CH;CHO])

[Br]ss = (2J[Br;] + J[BrCl] + J[BrO] + JJHOBr] + £[Br;][OH] +
k[BrO][NO] + k[BrO][ClO] + 2k[BrO][BrO] + £[BrO][OH])

k[CoH,] + £[CoH4] + A[C3He))



OASIS09 Measured and Calculated Radical Concentrations
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For “typical” daytime peaks of [Cl] = 1x10° and [Br] = 4x108,
[BrO] = 6x108

Calculated rate of O; destruction by Br = 0.26ppb/hr.

Calculated rate of O; destruction by Cl = 0.0.07ppb/hr.
21%



1x10° cm3 Cl represents a large oxidizing power.

For example, at T=245, for 1x10° Cl and 1x10°0OH

The first order k for consumption of n-butane is
1.74x10s! for OH (6.6 days)
and

2.0x107>s1 for Cl (0.56 days)



Relative consumptic%n rates for Hg®
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We know that you can make Cl, by irradiating sea salt aerosols
with 254nm radiation in the presence of O,.
Knipping et al., 2000
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We know, e.g. from Oum et al. and Wren et al. that
Br- at surfaces can be oxidized by O; to produce Br,
(snow/sea ice/sea salt aerosols)
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We know from Huff and Abbatt 2002 that

HOBr + H* + Br or CIf — BrCl and Br,
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We know that Br, is produced in saline snowpacks in the dark.

Foster et al., Science, 291, 471-474, 2001.

FIGURE 2
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Fig. 3. Correlation plots of BrO versus first-year sea-ice contact (left) and potential frost flowers
contact (right). Data colored in red occurred when ozone <1 ppbv and were ignored from the
correlation analysis.

We know that BrO seems to correlated with First Year Sea Ice
Simpson et al., 2006



We know that sea ice mass is rapidly decreasing, and that process is accelerating.

Ice Volume Anomaly relative to 1979-2011 [1000 km?]
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We know that
MYl is in very rapid decline

Perennial ice extent (million km?)
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It will be replaced by First Year Ice

NASA
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Simulated mean AT in winter DJF
for global AT=2C : 5.

The Arctic
will experience
massive change

Kaplan and New
Climatic Change, 2006



lce Extent 10° km?

Holland et al., GRL, 2006
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Weaver et al. (UVic) GRL 2007
Climate Change impacts of CO, emissions reductions relative to 2006 levels
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Eventually, the ice will be gone. So, how to simulate the future?



How will an ice-free Arctic impact
atmospheric composition?

*More O, at the surface?
*Smaller oxidation capacity

*Slower rate of production of CCN?

*But more water vapor? So, more cloud cover?

*Slower rate of Hg oxidation product inputs?

*Can we investigate these questions from
measurements over polynyas?

*How to simulate this world?
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We do know that ODEs can occur at relatively high T.
See, e.g. OBuoy number 2, currently in the Beaufort Sea:
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We think we know that this chemistry
occurs on surfaces. For ice, for lack
of a good term, let’s call it the QLL.

We think we know that this surface is
a god-awful horrible mess.
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Figure 2. 'H NMR spectra of a brine solution ([NaCl] = 0.500 M) at
different temperatures. Relative intensity scales are given by the factors
on the right. Each spectrum is an average of four scans. The time
domain signals were apodized, but in no case was the width of the
apodization function more than 20% of the intrinsic width of the 'H
line.
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13C NMR results for carboxylic acids
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D04304 GRANNAS ET AL.: ORGANIC MATTER IN ICE CORES JGR 2006 D04304
Table 1. Most Abundant Molecular Formulas Identified in Both Ice Core Samples®
1950 Core Sample 1300 Core Sample
Error in Formula Peak Error in Formula Peak Error in Formula Peak

Formula Mass, ppm Abundance Formula Mass, ppm Abundance Formula Mass, ppm Abundance
CagHy004 0.3 100 CssH,0SO —0.1 0.06 CogHa0O4 0.2 100
CyoHy4o0y4 0.0 47.9 C,5H,,S0 —0.2 0.04 Cr9Hy04 —-0.2 524
Ca6H3604 0.2 45.4 C35H24S0 0.1 0.06 Ca6H3604 0.2 337
C24H 5040 0.4 26.5 Ca5H26S0 0.0 0.04 C19H3406 —0.3 14.3
C24H44012 0.2 24.2 Ca5H20S0, —0.5 0.17 Ca6Has013 0.2 13.7
Ca6H45013 0.3 21 C55H2,S0, 0.6 0.11 C24Hy405 0.2 12.7
C27H26013 0.4 10.4 Cy5H,4S0, 0.4 0.07 CsoHyoOpy 0.1 10.7
CaoH310; 0.4 8.3 C,5H2050; 0.2 0.09 CoHss07 0.1 9.9
Co4H4004 0.1 7.8 Cy5H2,80; —-0.6 0.06 C30H4404 0.1 8.7
C2oH4607 0.2 5 C,5H,4S0; 0.5 0.06 Cy0H36010 0.2 5
Ca6H42N4O4 0.2 4 Cy6H2450; 0.5 0.10 C27H4206 —0.2 6.9
CpoH5004 0.0 3.6 CrsH6505 0.8 0.06 C35Hs3040 0.6 6.0
C,5H300; 0.1 32 C,;H,,S04 0.0 0.13 Co4Hy00, —0.1 5.9

The QLL for all environmental samples will be
a god-awful mess!



OASIS Interactions In the Arctic
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We do know from a number of people, like
Domine et al., and Ammann et al., and Kahan et al.,
that the QLL water does not behave like agueous water!



So, to simulate this world, we have to address the things
we don’t know.

Some of the things we don’t know

‘What the actual chemistry is that produces Br, and Cl,

*For the chemistry, e.g.

HOBr + H* + Br — Br, + H,O0
What rate constants do we use?

*For the important equilibria, like:

Br, (QLL) <~  Br,(gas)

What equilibrium constants do we use?

*Where are the reactants? At the ice/QLL interface? At the QLL/air interface?
‘What are the diffusion coefficients?

‘What are the organic reactants and how much is there?

s microbiology important?



So, in other words:

We don’t understand our container.

We don’t understand the bulk solvent.

We don’t know what our reactants are.

We don’t know where they are in the container
or what their concentrations are.



Simulating the current polar surface photochemistry
is very difficult. Simulating it for the future will be
even harder. Given this....

| think we need to first have a really good answer to the
following questions:

Why should we?

Why should we invest the effort?

Why is it important to be able to simulate O, at the poles
in the future?

Or does the justification hinge on Hg?

Or something else?

The answers to these questions influence what you
work on, and how much funding the community gets.
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Conclusions

*The future will be interesting and surprising!

*We have work to do!
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Cartoonbank.com ::

“I'm afraz'd you have humans.”



